Postingan Utama
- Get link
- X
- Other Apps
Pembahasan Buku Sukino BAB 2 LKS 5 Matematika Peminatan Kelas XI Kurikulum 2013
Assalamu'alaikum warahmatullahi wabarakaatuh
Sobat hudamath, di postingan kali ini akan kita bahas BAB LKS 5 Buku Sukino Matematika Peminatan Kelas XI Kurikulum 2013 khusus no 8. Untuk pembahasan no yang lainnya bisa sobat download di bagian bawah postingan ini.
Langsung saja ya
LKS 5
.
.
.
8. Jika A=580° , maka berlaku...
A. \(\sin \frac{1}{2}A = \frac{1}{2}\left[ {\sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right]\)
B. \(\sin \frac{1}{2}A = - \left[ {\sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right]\)
C. \(\sin \frac{1}{2}A = - \frac{1}{2}\left[ {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right]\)
D. \(\sin \frac{1}{2}A = - \frac{1}{2}\left[ {\sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right]\)
E. \(\cos \frac{1}{2}A = \left[ {\sqrt {1 + \sin A} - \sqrt {1 - \sin A} } \right]\)
Jawab : C
Pembahasan :
\(A = 580^\circ = \left( {360^\circ + 220^\circ } \right) = 220^\circ \left( {{\rm{Kuadran}}3} \right)\)
\(\cos 580^\circ = \cos \left( {360^\circ + 220^\circ } \right) = \cos 220^\circ = \cos \left( {180^\circ + 40^\circ } \right) = - \cos 40^\circ \)
\(\sin 580^\circ = \sin \left( {360^\circ + 220^\circ } \right) = \sin 220^\circ = \sin \left( {180^\circ + 40^\circ } \right) = - \sin 40^\circ \)
\(\sin \frac{1}{2}A = - \sqrt {\frac{{1 - \cos A}}{2}} \)
\(\sin 290^\circ = - \sqrt {\frac{{1 - \cos 580^\circ }}{2}} \)
\( = - \sqrt {\frac{{1 + \cos 40^\circ }}{2}} \)
\( = - \sqrt {\frac{{\left( {1 + \cos 40^\circ } \right){{\cos }^2}40^\circ }}{{2{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{{{\cos }^2}40^\circ + {{\cos }^3}40^\circ }}{{2{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{1 - {{\sin }^2}40^\circ + {{\cos }^2}40^\circ \cos 40^\circ }}{{2{{\cos }^2}40^\circ }}} \)
\(= - \sqrt {\frac{{\left( {1 - {{\sin }^2}40^\circ } \right) + \left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{2{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{\left( {1 - {{\sin }^2}40^\circ } \right) + \left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{2{{\cos }^2}40^\circ }}.\frac{2}{2}} \)
\( = - \sqrt {\frac{{2\left( {1 - {{\sin }^2}40^\circ } \right) + 2\left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{4{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{2\left( {1 - \sin 40^\circ } \right)\left( {1 + \sin 40^\circ } \right) + 2\left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{4{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{\left( {1 - \sin 40^\circ } \right)\left( {1 + \sin 40^\circ } \right)\left( {\left( {1 + \sin 40^\circ } \right) + \left( {1 - \sin 40^\circ } \right)} \right) + 2\left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{4{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{\left( {1 - \sin 40^\circ } \right)\left( {1 + \sin 40^\circ } \right)\left( {1 + \sin 40^\circ } \right) + \left( {1 - \sin 40^\circ } \right)\left( {1 + \sin 40^\circ } \right)\left( {1 - \sin 40^\circ } \right) + 2\left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {\left( {1 - {{\sin }^2}40^\circ } \right)} }}{{4{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\frac{{{{\left( {1 + \sin 40^\circ } \right)}^2}\left( {1 - \sin 40^\circ } \right) + {{\left( {1 - \sin 40^\circ } \right)}^2}\left( {1 + \sin 40^\circ } \right) + 2\left( {1 - {{\sin }^2}40^\circ } \right)\sqrt {1 - {{\sin }^2}40^\circ } }}{{4{{\cos }^2}40^\circ }}} \)
\( = - \sqrt {\left[ {\frac{{{{\left( {\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } + \left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } } \right)}^2}}}{{{2^2}{{\cos }^2}40^\circ }}} \right]} \)
\( = - \sqrt {{{\left\{ {\left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } + \left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\cos 40^\circ }}} \right]} \right\}}^2}} \)
\( = - \left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } + \left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\cos 40^\circ }}} \right]\)
\( = - \left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } }}{{2\cos 40^\circ }} + \frac{{\left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\cos 40^\circ }}} \right]\)
\( = - \left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } }}{{2\sqrt {{{\cos }^2}40^\circ } }} + \frac{{\left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\sqrt {{{\cos }^2}40^\circ } }}} \right]\)
\( = - \left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } }}{{2\sqrt {1 - {{\sin }^2}40^\circ } }} + \frac{{\left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\sqrt {1 - {{\sin }^2}40^\circ } }}} \right]\)
\( = - \left[ {\frac{{\left( {1 + \sin 40^\circ } \right)\sqrt {1 - \sin 40^\circ } }}{{2\sqrt {1 + \sin 40^\circ } \sqrt {1 - \sin 40^\circ } }} + \frac{{\left( {1 - \sin 40^\circ } \right)\sqrt {1 + \sin 40^\circ } }}{{2\sqrt {1 - \sin 40^\circ } \sqrt {1 + \sin 40^\circ } }}} \right]\)
\( = - \left[ {\frac{{1 + \sin 40^\circ }}{{2\sqrt {1 + \sin 40^\circ } }} + \frac{{1 - \sin 40^\circ }}{{2\sqrt {1 - \sin 40^\circ } }}} \right]\)
\( = - \left[ {\frac{{\sqrt {{{\left( {1 + \sin 40^\circ } \right)}^2}} }}{{2\sqrt {1 + \sin 40^\circ } }} + \frac{{\sqrt {{{\left( {1 - \sin 40^\circ } \right)}^2}} }}{{2\sqrt {1 - \sin 40^\circ } }}} \right]\)
\( = - \left[ {\frac{{\sqrt {1 + \sin 40^\circ } }}{2}.\frac{{\sqrt {1 + \sin 40^\circ } }}{{\sqrt {1 + \sin 40^\circ } }} + \frac{{\sqrt {1 - \sin 40^\circ } }}{2}.\frac{{\sqrt {1 - \sin 40^\circ } }}{{\sqrt {1 - \sin 40^\circ } }}} \right]\)
\( = - \left[ {\frac{{\sqrt {1 + \sin 40^\circ } }}{2} + \frac{{\sqrt {1 - \sin 40^\circ } }}{2}} \right]\)
\( = - \left[ {\frac{{\sqrt {1 + \sin 40^\circ } + \sqrt {1 - \sin 40^\circ } }}{2}} \right]\)
\( = - \frac{1}{2}\left[ {\sqrt {1 + \sin 40^\circ } + \sqrt {1 - \sin 40^\circ } } \right]\)
\( = - \frac{1}{2}\left[ {\sqrt {1 - \sin 580^\circ } + \sqrt {1 + \sin 580^\circ } } \right]\)
\( = - \frac{1}{2}\left[ {\sqrt {1 - \sin A} + \sqrt {1 + \sin A} } \right]\)
\( = - \frac{1}{2}\left[ {\sqrt {1 + \sin A} + \sqrt {1 - \sin A} } \right]\)
Selengkapnya Download Disini
Soal dan pembahasan LKS yang lain cek disini.
Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan atau salah ketik.
Terimakasih
Semoga bermanfaat 😊
Wassalamu'alaikum warahmatullahi wabarakaatuh
- Get link
- X
- Other Apps
Labels:
BAB 2
Matematika Peminatan Kelas XI
Pembahasan Buku Matematika Peminatan
Pembahasan buku Sukino
trigonometri
Comments
Popular Posts
Pembahasan Buku Sukino Kelas XI Matematika Peminatan revisi 2016
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 4 Matematika Peminatan Kelas XI Kurikulum 2013
- Get link
- X
- Other Apps
Server 1 knp tidak bisa ya.. untuk server 2 malah lari kemana2..
ReplyDeleteNo 5-10nya tolong dong
ReplyDeleteNo 5-10 nya kak ,aku butuh penjelasan mohom bantuan nyaa terimakasih
ReplyDeletecobaan apa lagi ini ya tuhann
ReplyDeleteEsay nya gk ada ya?
ReplyDelete