Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 5 Matematika Peminatan Kelas XI Kurikulum 2013 Skip to main content

Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 5 Matematika Peminatan Kelas XI Kurikulum 2013


LKS 5
1.   Tuliskan empat suku pertama dalam pangkat naik dari x pada setiap penjabaran (ekspansi) berikut:
a.  \({\left( {1 + \frac{x}{2}} \right)^6}\)
b.  \({\left( {1 + 2{x^2}} \right)^9}\)
c.   \({\left( {x + \frac{1}{x}} \right)^8}\)
d.   \({\left( {1 + x} \right)^2}{\left( {2 + x} \right)^6}\)
e.  \(x(1 + 3x){\left( {1 + \frac{1}{x}} \right)^6}\)
f.   \({\left( {1 + 3x} \right)^2}{\left( {2 + x} \right)^6}\)

Pembahahasan:
a.   \({\left( {1 + \frac{x}{2}} \right)^6} = C_0^6.{\left( 1 \right)^6}.{\left( {\frac{x}{2}} \right)^0} + C_1^6.{\left( 1 \right)^5}.{\left( {\frac{x}{2}} \right)^1} + C_2^6.{\left( 1 \right)^4}.{\left( {\frac{x}{2}} \right)^2} + C_3^6.{\left( 1 \right)^3}.{\left( {\frac{x}{2}} \right)^3} +  \ldots \)
\( = 1.1.1 + 6.1.\frac{x}{2} + 15.1.\frac{{{x^2}}}{4} + 20.1.\frac{{{x^3}}}{8} +  \ldots \)
\( = 1 + 3x + \frac{{15}}{4}{x^2} + \frac{5}{2}{x^3} +  \ldots \)

b.  \({\left( {1 + 2{x^2}} \right)^9} = C_0^9.{\left( 1 \right)^9}.{\left( {2{x^2}} \right)^0} + C_1^9.{\left( 1 \right)^8}.{\left( {2{x^2}} \right)^1} + C_2^9.{\left( 1 \right)^7}.{\left( {2{x^2}} \right)^2} + C_3^9.{\left( 1 \right)^6}.{\left( {2{x^2}} \right)^3} +  \ldots \)
\( = 1.1.1 + 9.1.2{x^2} + 36.1.4{x^4} + 84.1.8{x^6} +  \ldots \)
\( = 1 + 18{x^2} + 144{x^4} + 672{x^6} +  \ldots \)

c.  \({\left( {x + \frac{1}{x}} \right)^8} = C_8^8.{\left( x \right)^0}.{\left( {\frac{1}{x}} \right)^8} + C_7^8.{\left( x \right)^1}.{\left( {\frac{1}{x}} \right)^7} + C_6^8.{\left( x \right)^2}.{\left( {\frac{1}{x}} \right)^6} + C_5^8.{\left( x \right)^3}.{\left( {\frac{1}{x}} \right)^5} +  \ldots \)
\( = 1.1.\frac{1}{{{x^8}}} + 8.x.\frac{1}{{{x^7}}} + 28.{x^2}.\frac{1}{{{x^6}}} + 56.{x^3}.\frac{1}{{{x^5}}} +  \ldots \)
\( = {x^{ - 8}} + 8{x^{ - 6}} + 28{x^{ - 4}} + 56{x^{ - 2}} +  \ldots \)

d.  \({\left( {1 + x} \right)^2}{\left( {2 + x} \right)^6} = \left( {1 + 2x + {x^2}} \right)(C_0^6.{\left( 2 \right)^6}.{\left( x \right)^0} + C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\)
\( = \left( {1 + 2x + {x^2}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 2x + {x^2}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^0},{x^1},{x^2},{x^3}\) yaitu:
\( = 64 + 192x + 128x + 384{x^2} + 240{x^2} + 64{x^2} + 160{x^3} + 480{x^3} + 192{x^3} +  \ldots \)
\( = 64 + 320x + 688{x^2} + 832{x^3} +  \ldots \)

e.  \(x\left( {1 + 3x} \right){\left( {1 + \frac{1}{x}} \right)^6} = \left( {x + 3{x^2}} \right)\left( {C_6^6.{{\left( 1 \right)}^0}.{{\left( {\frac{1}{x}} \right)}^6} + C_5^6.{{\left( 1 \right)}^1}.{{\left( {\frac{1}{x}} \right)}^5} + C_4^6.{{\left( 1 \right)}^2}.{{\left( {\frac{1}{x}} \right)}^4} + C_3^6.{{\left( 1 \right)}^3}.{{\left( {\frac{1}{x}} \right)}^3} + } \right.\left. {C_2^6.{{\left( 1 \right)}^4}.{{\left( {\frac{1}{x}} \right)}^2} + C_1^6.{{\left( 1 \right)}^5}.{{\left( {\frac{1}{x}} \right)}^1} + C_0^6.{{\left( 1 \right)}^6}.{{\left( {\frac{1}{x}} \right)}^0}} \right)\)
\( = \left( {x + 3{x^2}} \right)\left( {1.1.\frac{1}{{{x^6}}} + 6.1.\frac{1}{{{x^5}}} + 15.1.\frac{1}{{{x^4}}} + 20.1.\frac{1}{{{x^3}}} + } \right.\left. {15.1.\frac{1}{{{x^2}}} + 6.1.\frac{1}{x} + 1.1.1} \right)\)
\( = \left( {x + 3{x^2}} \right)\left( {{x^{ - 6}} + 6{x^{ - 5}} + 15{x^{ - 4}} + 20{x^{ - 3}} + } \right.\left. {15{x^{ - 2}} + 6{x^{ - 1}} + 1} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^{ - 5}},{x^{ - 4}},{x^{ - 3}},{x^{ - 2}}\) yaitu:
\( = {x^{ - 5}} + 6{x^{ - 4}} + 3{x^{ - 4}} + 15{x^{ - 3}} + 18{x^{ - 3}} + 20{x^{ - 2}} + 45{x^{ - 2}} +  \ldots \)
\( = {x^{ - 5}} + 9{x^{ - 4}} + 33{x^{ - 3}} + 65{x^{ - 2}} +  \ldots \)

f.  \({\left( {1 + 3x} \right)^2}{\left( {2 + x} \right)^6} = \left( {1 + 6x + 9{x^2}} \right)(C_0^6.{\left( 2 \right)^6}.{\left( x \right)^0} + C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\)
\( = \left( {1 + 6x + 9{x^2}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 6x + 9{x^2}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^0},{x^1},{x^2},{x^3}\) yaitu:
\( = 64 + 192x + 384x + 1152{x^2} + 240{x^2} + 576{x^2} + 160{x^3} + 1440{x^3} + 1728{x^3} +  \ldots \)
\( = 64 + 576x + 1968{x^2} + 3328{x^3} +  \ldots \)

2.   Tentukan koefisien dari \({x^4}\) pada setiap penjabaran berikut:
a.  \({\left( {1 + \frac{x}{2}} \right)^{10}}\)
b.   \({\left( {x + \frac{1}{x}} \right)^9}\)
c.    \({\left( {1 + 2{x^2}} \right)^{11}}\)
d.   \({\left( {1 + 3x} \right)^3}{\left( {2 + x} \right)^6}\)

Pembahasan :
a.  \({\left( {1 + \frac{x}{2}} \right)^{10}} =  \ldots  + C_4^{10}.{\left( 1 \right)^6}.{\left( {\frac{x}{2}} \right)^4} +  \ldots  =  \ldots  + 210.1.\frac{{{x^4}}}{{16}} +  \ldots  =  \ldots  + \frac{{105}}{8}{x^4} +  \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + \frac{x}{2}} \right)^{10}}\) adalah \(\frac{{105}}{8}\)

b.  \({\left( {x + \frac{1}{x}} \right)^9} = C_0^9.{\left( x \right)^9}.{\left( {\frac{1}{x}} \right)^0} + C_1^9.{\left( x \right)^8}.{\left( {\frac{1}{x}} \right)^1} + C_2^9.{\left( x \right)^7}.{\left( {\frac{1}{x}} \right)^2} + C_3^9.{\left( x \right)^6}.{\left( {\frac{1}{x}} \right)^3} + C_4^9.{\left( x \right)^5}.{\left( {\frac{1}{x}} \right)^4} + C_5^9.{\left( x \right)^4}.{\left( {\frac{1}{x}} \right)^5} + C_6^9.{\left( x \right)^3}.{\left( {\frac{1}{x}} \right)^6} + C_7^9.{\left( x \right)^2}.{\left( {\frac{1}{x}} \right)^7} + C_8^9.{\left( x \right)^1}.{\left( {\frac{1}{x}} \right)^8} + C_9^9.{\left( x \right)^0}.{\left( {\frac{1}{x}} \right)^9}\)
\( = 1.{x^9}.1 + 9.{x^8}.\frac{1}{x} + 36.{x^7}.\frac{1}{{{x^2}}} + 84.{x^6}.\frac{1}{{{x^3}}} + 126.{x^5}.\frac{1}{{{x^4}}} + 126.{x^4}.\frac{1}{{{x^5}}} + 84.{x^3}.\frac{1}{{{x^6}}} + 36.{x^2}.\frac{1}{{{x^7}}} + 9.{x^1}.\frac{1}{{{x^8}}} + 1.1.\frac{1}{{{x^9}}}\)
\( = {x^9} + 9{x^7} + 36{x^5} + 84{x^3} + 126x + 126{x^{ - 1}} + 84{x^{ - 3}} + 36{x^{ - 5}} + 9{x^{ - 7}} + {x^{ - 9}}\)
Dari penjabaran, dapat dilihat bahwa tidak ada variabel \({x^4}\). Artinya koefisien\({x^4}\) dari penjabaran \({\left( {x + \frac{1}{x}} \right)^9}\) adalah 0

c.  \({\left( {1 + 2{x^2}} \right)^{11}} =  \ldots  + C_2^{11}.{\left( 1 \right)^9}.{\left( {2{x^2}} \right)^2} +  \ldots  =  \ldots  + 55.1.4{x^4} +  \ldots  =  \ldots  + 220{x^4} +  \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + 2{x^2}} \right)^{11}}\) adalah 220

d.  \[{\left( {1 + 3x} \right)^3}{\left( {2 + x} \right)^6} = \left( {C_0^3.{{\left( 1 \right)}^3}.{{\left( {3x} \right)}^0}} \right. + C_1^3.{\left( 1 \right)^2}.{\left( {3x} \right)^1} + C_2^3.{\left( 1 \right)^1}.{\left( {3x} \right)^2} + C_3^3.\left. {{{\left( 1 \right)}^0}.{{\left( {3x} \right)}^3}} \right)\left( {C_0^6.{{\left( 2 \right)}^6}.{{\left( x \right)}^0} + } \right.C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\]
\( = \left( {1 + 9x + 9{x^2} + 27{x^3}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 9x + 9{x^2} + 27{x^3}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
\( =  \ldots  + 60{x^4} + 1440{x^4} + 2160{x^4} + 5184{x^4} +  \ldots \)
\( =  \ldots  + 8844{x^4} +  \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + 2{x^2}} \right)^{11}} adalah 8844




Selengkapnya Download di sini


Soal dan pembahasan LKS yang lain cek disini.

Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan salah ketik.
Terimakasih
Semoga bermanfaat 😊

Comments

  1. Lks 5 dari nomor 9 -15 kok gak ada mas?

    ReplyDelete
    Replies
    1. Bagian A no nya kan emg cuma 1-8 bang ☺️

      Delete
  2. Nomor 3 sama Nomor 4 kok ngga ada?

    ReplyDelete
    Replies
    1. di download dulu ya file nya
      no 3 dan 4 ada di file download

      Delete

Post a Comment