Postingan Utama
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 5 Matematika Peminatan Kelas XI Kurikulum 2013
LKS 5
1. Tuliskan empat suku pertama dalam pangkat naik dari x pada setiap penjabaran (ekspansi) berikut:
a. \({\left( {1 + \frac{x}{2}} \right)^6}\)
b. \({\left( {1 + 2{x^2}} \right)^9}\)
c. \({\left( {x + \frac{1}{x}} \right)^8}\)
d. \({\left( {1 + x} \right)^2}{\left( {2 + x} \right)^6}\)
e. \(x(1 + 3x){\left( {1 + \frac{1}{x}} \right)^6}\)
f. \({\left( {1 + 3x} \right)^2}{\left( {2 + x} \right)^6}\)
Pembahahasan:
a. \({\left( {1 + \frac{x}{2}} \right)^6} = C_0^6.{\left( 1 \right)^6}.{\left( {\frac{x}{2}} \right)^0} + C_1^6.{\left( 1 \right)^5}.{\left( {\frac{x}{2}} \right)^1} + C_2^6.{\left( 1 \right)^4}.{\left( {\frac{x}{2}} \right)^2} + C_3^6.{\left( 1 \right)^3}.{\left( {\frac{x}{2}} \right)^3} + \ldots \)
\( = 1.1.1 + 6.1.\frac{x}{2} + 15.1.\frac{{{x^2}}}{4} + 20.1.\frac{{{x^3}}}{8} + \ldots \)
\( = 1 + 3x + \frac{{15}}{4}{x^2} + \frac{5}{2}{x^3} + \ldots \)
b. \({\left( {1 + 2{x^2}} \right)^9} = C_0^9.{\left( 1 \right)^9}.{\left( {2{x^2}} \right)^0} + C_1^9.{\left( 1 \right)^8}.{\left( {2{x^2}} \right)^1} + C_2^9.{\left( 1 \right)^7}.{\left( {2{x^2}} \right)^2} + C_3^9.{\left( 1 \right)^6}.{\left( {2{x^2}} \right)^3} + \ldots \)
\( = 1.1.1 + 9.1.2{x^2} + 36.1.4{x^4} + 84.1.8{x^6} + \ldots \)
\( = 1 + 18{x^2} + 144{x^4} + 672{x^6} + \ldots \)
c. \({\left( {x + \frac{1}{x}} \right)^8} = C_8^8.{\left( x \right)^0}.{\left( {\frac{1}{x}} \right)^8} + C_7^8.{\left( x \right)^1}.{\left( {\frac{1}{x}} \right)^7} + C_6^8.{\left( x \right)^2}.{\left( {\frac{1}{x}} \right)^6} + C_5^8.{\left( x \right)^3}.{\left( {\frac{1}{x}} \right)^5} + \ldots \)
\( = 1.1.\frac{1}{{{x^8}}} + 8.x.\frac{1}{{{x^7}}} + 28.{x^2}.\frac{1}{{{x^6}}} + 56.{x^3}.\frac{1}{{{x^5}}} + \ldots \)
\( = {x^{ - 8}} + 8{x^{ - 6}} + 28{x^{ - 4}} + 56{x^{ - 2}} + \ldots \)
d. \({\left( {1 + x} \right)^2}{\left( {2 + x} \right)^6} = \left( {1 + 2x + {x^2}} \right)(C_0^6.{\left( 2 \right)^6}.{\left( x \right)^0} + C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\)
\( = \left( {1 + 2x + {x^2}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 2x + {x^2}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^0},{x^1},{x^2},{x^3}\) yaitu:
\( = 64 + 192x + 128x + 384{x^2} + 240{x^2} + 64{x^2} + 160{x^3} + 480{x^3} + 192{x^3} + \ldots \)
\( = 64 + 320x + 688{x^2} + 832{x^3} + \ldots \)
e. \(x\left( {1 + 3x} \right){\left( {1 + \frac{1}{x}} \right)^6} = \left( {x + 3{x^2}} \right)\left( {C_6^6.{{\left( 1 \right)}^0}.{{\left( {\frac{1}{x}} \right)}^6} + C_5^6.{{\left( 1 \right)}^1}.{{\left( {\frac{1}{x}} \right)}^5} + C_4^6.{{\left( 1 \right)}^2}.{{\left( {\frac{1}{x}} \right)}^4} + C_3^6.{{\left( 1 \right)}^3}.{{\left( {\frac{1}{x}} \right)}^3} + } \right.\left. {C_2^6.{{\left( 1 \right)}^4}.{{\left( {\frac{1}{x}} \right)}^2} + C_1^6.{{\left( 1 \right)}^5}.{{\left( {\frac{1}{x}} \right)}^1} + C_0^6.{{\left( 1 \right)}^6}.{{\left( {\frac{1}{x}} \right)}^0}} \right)\)
\( = \left( {x + 3{x^2}} \right)\left( {1.1.\frac{1}{{{x^6}}} + 6.1.\frac{1}{{{x^5}}} + 15.1.\frac{1}{{{x^4}}} + 20.1.\frac{1}{{{x^3}}} + } \right.\left. {15.1.\frac{1}{{{x^2}}} + 6.1.\frac{1}{x} + 1.1.1} \right)\)
\( = \left( {x + 3{x^2}} \right)\left( {{x^{ - 6}} + 6{x^{ - 5}} + 15{x^{ - 4}} + 20{x^{ - 3}} + } \right.\left. {15{x^{ - 2}} + 6{x^{ - 1}} + 1} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^{ - 5}},{x^{ - 4}},{x^{ - 3}},{x^{ - 2}}\) yaitu:
\( = {x^{ - 5}} + 6{x^{ - 4}} + 3{x^{ - 4}} + 15{x^{ - 3}} + 18{x^{ - 3}} + 20{x^{ - 2}} + 45{x^{ - 2}} + \ldots \)
\( = {x^{ - 5}} + 9{x^{ - 4}} + 33{x^{ - 3}} + 65{x^{ - 2}} + \ldots \)
f. \({\left( {1 + 3x} \right)^2}{\left( {2 + x} \right)^6} = \left( {1 + 6x + 9{x^2}} \right)(C_0^6.{\left( 2 \right)^6}.{\left( x \right)^0} + C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\)
\( = \left( {1 + 6x + 9{x^2}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 6x + 9{x^2}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
Variabel dari empat suku pertama dalam pangkat naik pada operasi polynomial ini adalah \({x^0},{x^1},{x^2},{x^3}\) yaitu:
\( = 64 + 192x + 384x + 1152{x^2} + 240{x^2} + 576{x^2} + 160{x^3} + 1440{x^3} + 1728{x^3} + \ldots \)
\( = 64 + 576x + 1968{x^2} + 3328{x^3} + \ldots \)
2. Tentukan koefisien dari \({x^4}\) pada setiap penjabaran berikut:
a. \({\left( {1 + \frac{x}{2}} \right)^{10}}\)
b. \({\left( {x + \frac{1}{x}} \right)^9}\)
c. \({\left( {1 + 2{x^2}} \right)^{11}}\)
d. \({\left( {1 + 3x} \right)^3}{\left( {2 + x} \right)^6}\)
Pembahasan :
a. \({\left( {1 + \frac{x}{2}} \right)^{10}} = \ldots + C_4^{10}.{\left( 1 \right)^6}.{\left( {\frac{x}{2}} \right)^4} + \ldots = \ldots + 210.1.\frac{{{x^4}}}{{16}} + \ldots = \ldots + \frac{{105}}{8}{x^4} + \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + \frac{x}{2}} \right)^{10}}\) adalah \(\frac{{105}}{8}\)
b. \({\left( {x + \frac{1}{x}} \right)^9} = C_0^9.{\left( x \right)^9}.{\left( {\frac{1}{x}} \right)^0} + C_1^9.{\left( x \right)^8}.{\left( {\frac{1}{x}} \right)^1} + C_2^9.{\left( x \right)^7}.{\left( {\frac{1}{x}} \right)^2} + C_3^9.{\left( x \right)^6}.{\left( {\frac{1}{x}} \right)^3} + C_4^9.{\left( x \right)^5}.{\left( {\frac{1}{x}} \right)^4} + C_5^9.{\left( x \right)^4}.{\left( {\frac{1}{x}} \right)^5} + C_6^9.{\left( x \right)^3}.{\left( {\frac{1}{x}} \right)^6} + C_7^9.{\left( x \right)^2}.{\left( {\frac{1}{x}} \right)^7} + C_8^9.{\left( x \right)^1}.{\left( {\frac{1}{x}} \right)^8} + C_9^9.{\left( x \right)^0}.{\left( {\frac{1}{x}} \right)^9}\)
\( = 1.{x^9}.1 + 9.{x^8}.\frac{1}{x} + 36.{x^7}.\frac{1}{{{x^2}}} + 84.{x^6}.\frac{1}{{{x^3}}} + 126.{x^5}.\frac{1}{{{x^4}}} + 126.{x^4}.\frac{1}{{{x^5}}} + 84.{x^3}.\frac{1}{{{x^6}}} + 36.{x^2}.\frac{1}{{{x^7}}} + 9.{x^1}.\frac{1}{{{x^8}}} + 1.1.\frac{1}{{{x^9}}}\)
\( = {x^9} + 9{x^7} + 36{x^5} + 84{x^3} + 126x + 126{x^{ - 1}} + 84{x^{ - 3}} + 36{x^{ - 5}} + 9{x^{ - 7}} + {x^{ - 9}}\)
Dari penjabaran, dapat dilihat bahwa tidak ada variabel \({x^4}\). Artinya koefisien\({x^4}\) dari penjabaran \({\left( {x + \frac{1}{x}} \right)^9}\) adalah 0
c. \({\left( {1 + 2{x^2}} \right)^{11}} = \ldots + C_2^{11}.{\left( 1 \right)^9}.{\left( {2{x^2}} \right)^2} + \ldots = \ldots + 55.1.4{x^4} + \ldots = \ldots + 220{x^4} + \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + 2{x^2}} \right)^{11}}\) adalah 220
d. \[{\left( {1 + 3x} \right)^3}{\left( {2 + x} \right)^6} = \left( {C_0^3.{{\left( 1 \right)}^3}.{{\left( {3x} \right)}^0}} \right. + C_1^3.{\left( 1 \right)^2}.{\left( {3x} \right)^1} + C_2^3.{\left( 1 \right)^1}.{\left( {3x} \right)^2} + C_3^3.\left. {{{\left( 1 \right)}^0}.{{\left( {3x} \right)}^3}} \right)\left( {C_0^6.{{\left( 2 \right)}^6}.{{\left( x \right)}^0} + } \right.C_1^6.{\left( 2 \right)^5}.{\left( x \right)^1} + C_2^6.{\left( 2 \right)^4}.{\left( x \right)^2} + C_3^6.{\left( 2 \right)^3}.{\left( x \right)^3} + C_4^6.{\left( 2 \right)^2}.{\left( x \right)^4} + C_5^6.{\left( 2 \right)^1}.{\left( x \right)^5} + C_6^6.{\left( 2 \right)^0}.{\left( x \right)^6})\]
\( = \left( {1 + 9x + 9{x^2} + 27{x^3}} \right)\left( {1.64.1 + 6.32.x + 15.16.{x^2} + 20.8.{x^3} + 15.4.{x^4} + 6.2.{x^5} + 1.1.{x^6}} \right)\)
\( = \left( {1 + 9x + 9{x^2} + 27{x^3}} \right)\left( {64 + 192x + 240{x^2} + 160{x^3} + 60{x^4} + 12{x^5} + {x^6}} \right)\)
\( = \ldots + 60{x^4} + 1440{x^4} + 2160{x^4} + 5184{x^4} + \ldots \)
\( = \ldots + 8844{x^4} + \ldots \)
Jadi, koefisien \({x^4}\) dari penjabaran \({\left( {1 + 2{x^2}} \right)^{11}} adalah 8844
Selengkapnya Download di sini
Soal dan pembahasan LKS yang lain cek disini.
Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan salah ketik.
Terimakasih
Semoga bermanfaat 😊
- Get link
- X
- Other Apps
Labels:
BAB 4
Matematika Peminatan Kelas XI
Pembahasan Buku Matematika Peminatan
Pembahasan buku Sukino
polinomial
suku banyak
Comments
Popular Posts
Pembahasan Buku Sukino Kelas XI Matematika Peminatan revisi 2016
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 4 Matematika Peminatan Kelas XI Kurikulum 2013
- Get link
- X
- Other Apps
Lks 5 dari nomor 9 -15 kok gak ada mas?
ReplyDeleteBagian A no nya kan emg cuma 1-8 bang ☺️
DeleteKo gabisa dibukaa
ReplyDeleteNomor 3 sama Nomor 4 kok ngga ada?
ReplyDeletedi download dulu ya file nya
Deleteno 3 dan 4 ada di file download