Postingan Utama
- Get link
- X
- Other Apps
RUKO 2 Trigonometri Analitika no 1-30
Assalamu'alaikum warahmatullahi wabarakaatuh
Sobat hudamath, di postingan kali ini akan kita bahas RUKO 2 Buku Sukino Matematika Peminatan Kelas XI Kurikulum 2013 di soal-soal no tertentu saja. Untuk pembahasan no yang lainnya bisa sobat download di bagian bawah postingan ini.
Langsung saja ya
.
.
.
16. \({\cos ^4}3\theta - {\sin ^4}3\theta = \ldots \)
A. \(\cos 2\theta \)
B. \(\cos 3\theta \)
C. \(\sin 3\theta \)
D. \(\sin 6\theta \)
E. \(\cos 6\theta \)
Jawab : E
Pembahasan :
\({\cos ^4}3\theta - {\sin ^4}3\theta \)
\( = {\left( {{{\cos }^2}3\theta } \right)^2} - {\left( {{{\sin }^2}3\theta } \right)^2}\)
\( = \left( {{{\cos }^2}3\theta + {{\sin }^2}3\theta } \right)\left( {{{\cos }^2}3\theta - {{\sin }^2}3\theta } \right)\)
\( = 1.\left( {{{\cos }^2}3\theta - {{\sin }^2}3\theta } \right)\)
\( = \cos 6\theta \)
27. Nilai dari \(\left( {\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7}} \right)\) adalah...
A. \( - \frac{1}{8}\)
B. \( - \frac{1}{4}\)
C. 0
D. \(\frac{1}{2}\)
E. \(\frac{1}{3}\)
Jawab : A
Pembahasan :
Ingat, \(\sin 2A = 2\sin A\cos A \to \cos A = \frac{{\sin 2A}}{{2\sin A}}\)
\(\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = \frac{{\sin 2\left( {\frac{\pi }{7}} \right)}}{{2\sin \left( {\frac{\pi }{7}} \right)}}.\frac{{\sin 2\left( {\frac{{2\pi }}{7}} \right)}}{{2\sin \left( {\frac{{2\pi }}{7}} \right)}}.\frac{{\sin 2\left( {\frac{{4\pi }}{7}} \right)}}{{2\sin \left( {\frac{{4\pi }}{7}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{2\pi }}{7}} \right)}}{{8\sin \left( {\frac{\pi }{7}} \right)}}.\frac{{\sin \left( {\frac{{4\pi }}{7}} \right)}}{{\sin \left( {\frac{{2\pi }}{7}} \right)}}.\frac{{\sin \left( {\frac{{8\pi }}{7}} \right)}}{{\sin \left( {\frac{{4\pi }}{7}} \right)}}\)
\( = \frac{{\sin \left( {\pi + \frac{\pi }{7}} \right)}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{\sin \pi \cos \frac{\pi }{7} + \cos \pi \sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{0.\cos \frac{\pi }{7} + \left( { - 1} \right)\sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{ - \sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = - \frac{1}{8}\)
28. Nilai dari \(\left( {\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{9\pi }}{{14}}} \right)\) adalah...
A. \(\frac{1}{{16}}\)
B. \(\frac{1}{{8}}\)
C. \(\frac{1}{{4}}\)
D. \(\frac{1}{{2}}\)
E. 1
Jawab : B
Pembahasan :
Ingat, \(\sin x = \cos \left( {\frac{\pi }{2} - x} \right)\) sehingga:
\(\sin \frac{{3\pi }}{{14}} = \cos \left( {\frac{\pi }{2} - \frac{{3\pi }}{{14}}} \right) = \cos \left( {\frac{{4\pi }}{{14}}} \right)\)
\(\sin \frac{{9\pi }}{{14}} = \cos \left( {\frac{\pi }{2} - \frac{{9\pi }}{{14}}} \right) = \cos \left( { - \frac{{2\pi }}{{14}}} \right) = \cos \left( {\frac{{2\pi }}{{14}}} \right)\)
Ingat pula bahwa \(2\sin A\cos A = \sin 2A\)
Jadi:
\(\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{9\pi }}{{14}} = \sin \frac{\pi }{{14}}\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}\)
\( = \sin \frac{\pi }{{14}}\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}} \times \frac{{2\cos \frac{\pi }{{14}}}}{{2\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {2\sin \frac{\pi }{{14}}\cos \frac{\pi }{{14}}} \right)\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}}}{{2\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {\sin \frac{{2\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}}}{{2\cos \frac{\pi }{{14}}}} \times \frac{2}{2}\)
\( = \frac{{\left( {2\sin \frac{{2\pi }}{{14}}\cos \frac{{2\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}}}{{4\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {\sin \frac{{4\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}}}{{4\cos \frac{\pi }{{14}}}} \times \frac{2}{2}\)
\( = \frac{{\left( {2\sin \frac{{4\pi }}{{14}}\cos \frac{{4\pi }}{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\sin \frac{{8\pi }}{{14}}}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \left( {\frac{\pi }{2} - \frac{{8\pi }}{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \left( { - \frac{\pi }{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \frac{\pi }{{14}}}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{1}{8}\)
29. Nilai \(\left( {\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ } \right)\) sama dengan...
A. 1
B. 2
C. 3
D. 4
E. 5
Jawab : D
Pembahasan :
Ingat, \(\cot x = \tan \left( {90^\circ - x} \right)\) sehingga:
\(\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ \)
\( = \tan 9^\circ - \tan 27^\circ - \tan \left( {90^\circ - 27^\circ } \right) + \tan \left( {90^\circ - 9^\circ } \right)\)
\( = \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ \)
\( = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)\)
\( = \frac{{\sin 9^\circ }}{{\cos 9^\circ }} + \frac{{\cos 9^\circ }}{{\sin 9^\circ }} - \left( {\frac{{\sin 27^\circ }}{{\cos 27^\circ }} + \frac{{\cos 27^\circ }}{{\sin 27^\circ }}} \right)\)
\( = \frac{{{{\sin }^2}9^\circ + {{\cos }^2}9^\circ }}{{\sin 9^\circ \cos 9^\circ }} - \left( {\frac{{{{\sin }^2}27^\circ + {{\cos }^2}27^\circ }}{{\sin 27^\circ \cos 27^\circ }}} \right)\)
\( = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}\)
\( = \frac{2}{{2\sin 9^\circ \cos 9^\circ }} - \frac{2}{{2\sin 27^\circ \cos 27^\circ }}\)
\( = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}\)
\( = \frac{{2\sin 54^\circ - 2\sin 18^\circ }}{{\sin 18^\circ \sin 54^\circ }}\)
\( = \frac{{2\left( {\sin 54^\circ - \sin 18^\circ } \right)}}{{\sin 18^\circ \sin 54^\circ }}\)
ingat, \(\sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\) sehingga:
\( = \frac{{2\left( {2\cos \left( {36^\circ } \right)\sin \left( {18^\circ } \right)} \right)}}{{\sin 18^\circ \sin 54^\circ }}\)
\( = \frac{{4\cos 36^\circ }}{{\sin 54^\circ }}\)
= 4
.
.
.
Wassalamu'alaikum warahmatullahi wabarakaatuh
.
.
.
16. \({\cos ^4}3\theta - {\sin ^4}3\theta = \ldots \)
A. \(\cos 2\theta \)
B. \(\cos 3\theta \)
C. \(\sin 3\theta \)
D. \(\sin 6\theta \)
E. \(\cos 6\theta \)
Jawab : E
Pembahasan :
\({\cos ^4}3\theta - {\sin ^4}3\theta \)
\( = {\left( {{{\cos }^2}3\theta } \right)^2} - {\left( {{{\sin }^2}3\theta } \right)^2}\)
\( = \left( {{{\cos }^2}3\theta + {{\sin }^2}3\theta } \right)\left( {{{\cos }^2}3\theta - {{\sin }^2}3\theta } \right)\)
\( = 1.\left( {{{\cos }^2}3\theta - {{\sin }^2}3\theta } \right)\)
\( = \cos 6\theta \)
27. Nilai dari \(\left( {\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7}} \right)\) adalah...
A. \( - \frac{1}{8}\)
B. \( - \frac{1}{4}\)
C. 0
D. \(\frac{1}{2}\)
E. \(\frac{1}{3}\)
Jawab : A
Pembahasan :
Ingat, \(\sin 2A = 2\sin A\cos A \to \cos A = \frac{{\sin 2A}}{{2\sin A}}\)
\(\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = \frac{{\sin 2\left( {\frac{\pi }{7}} \right)}}{{2\sin \left( {\frac{\pi }{7}} \right)}}.\frac{{\sin 2\left( {\frac{{2\pi }}{7}} \right)}}{{2\sin \left( {\frac{{2\pi }}{7}} \right)}}.\frac{{\sin 2\left( {\frac{{4\pi }}{7}} \right)}}{{2\sin \left( {\frac{{4\pi }}{7}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{2\pi }}{7}} \right)}}{{8\sin \left( {\frac{\pi }{7}} \right)}}.\frac{{\sin \left( {\frac{{4\pi }}{7}} \right)}}{{\sin \left( {\frac{{2\pi }}{7}} \right)}}.\frac{{\sin \left( {\frac{{8\pi }}{7}} \right)}}{{\sin \left( {\frac{{4\pi }}{7}} \right)}}\)
\( = \frac{{\sin \left( {\pi + \frac{\pi }{7}} \right)}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{\sin \pi \cos \frac{\pi }{7} + \cos \pi \sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{0.\cos \frac{\pi }{7} + \left( { - 1} \right)\sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = \frac{{ - \sin \frac{\pi }{7}}}{{8\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = - \frac{1}{8}\)
28. Nilai dari \(\left( {\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{9\pi }}{{14}}} \right)\) adalah...
A. \(\frac{1}{{16}}\)
B. \(\frac{1}{{8}}\)
C. \(\frac{1}{{4}}\)
D. \(\frac{1}{{2}}\)
E. 1
Jawab : B
Pembahasan :
Ingat, \(\sin x = \cos \left( {\frac{\pi }{2} - x} \right)\) sehingga:
\(\sin \frac{{3\pi }}{{14}} = \cos \left( {\frac{\pi }{2} - \frac{{3\pi }}{{14}}} \right) = \cos \left( {\frac{{4\pi }}{{14}}} \right)\)
\(\sin \frac{{9\pi }}{{14}} = \cos \left( {\frac{\pi }{2} - \frac{{9\pi }}{{14}}} \right) = \cos \left( { - \frac{{2\pi }}{{14}}} \right) = \cos \left( {\frac{{2\pi }}{{14}}} \right)\)
Ingat pula bahwa \(2\sin A\cos A = \sin 2A\)
Jadi:
\(\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{9\pi }}{{14}} = \sin \frac{\pi }{{14}}\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}\)
\( = \sin \frac{\pi }{{14}}\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}} \times \frac{{2\cos \frac{\pi }{{14}}}}{{2\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {2\sin \frac{\pi }{{14}}\cos \frac{\pi }{{14}}} \right)\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}}}{{2\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {\sin \frac{{2\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}\cos \frac{{2\pi }}{{14}}}}{{2\cos \frac{\pi }{{14}}}} \times \frac{2}{2}\)
\( = \frac{{\left( {2\sin \frac{{2\pi }}{{14}}\cos \frac{{2\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}}}{{4\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\left( {\sin \frac{{4\pi }}{{14}}} \right)\cos \frac{{4\pi }}{{14}}}}{{4\cos \frac{\pi }{{14}}}} \times \frac{2}{2}\)
\( = \frac{{\left( {2\sin \frac{{4\pi }}{{14}}\cos \frac{{4\pi }}{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\sin \frac{{8\pi }}{{14}}}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \left( {\frac{\pi }{2} - \frac{{8\pi }}{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \left( { - \frac{\pi }{{14}}} \right)}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{{\cos \frac{\pi }{{14}}}}{{8\cos \frac{\pi }{{14}}}}\)
\( = \frac{1}{8}\)
29. Nilai \(\left( {\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ } \right)\) sama dengan...
A. 1
B. 2
C. 3
D. 4
E. 5
Jawab : D
Pembahasan :
Ingat, \(\cot x = \tan \left( {90^\circ - x} \right)\) sehingga:
\(\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ \)
\( = \tan 9^\circ - \tan 27^\circ - \tan \left( {90^\circ - 27^\circ } \right) + \tan \left( {90^\circ - 9^\circ } \right)\)
\( = \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ \)
\( = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)\)
\( = \frac{{\sin 9^\circ }}{{\cos 9^\circ }} + \frac{{\cos 9^\circ }}{{\sin 9^\circ }} - \left( {\frac{{\sin 27^\circ }}{{\cos 27^\circ }} + \frac{{\cos 27^\circ }}{{\sin 27^\circ }}} \right)\)
\( = \frac{{{{\sin }^2}9^\circ + {{\cos }^2}9^\circ }}{{\sin 9^\circ \cos 9^\circ }} - \left( {\frac{{{{\sin }^2}27^\circ + {{\cos }^2}27^\circ }}{{\sin 27^\circ \cos 27^\circ }}} \right)\)
\( = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}\)
\( = \frac{2}{{2\sin 9^\circ \cos 9^\circ }} - \frac{2}{{2\sin 27^\circ \cos 27^\circ }}\)
\( = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}\)
\( = \frac{{2\sin 54^\circ - 2\sin 18^\circ }}{{\sin 18^\circ \sin 54^\circ }}\)
\( = \frac{{2\left( {\sin 54^\circ - \sin 18^\circ } \right)}}{{\sin 18^\circ \sin 54^\circ }}\)
ingat, \(\sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\) sehingga:
\( = \frac{{2\left( {2\cos \left( {36^\circ } \right)\sin \left( {18^\circ } \right)} \right)}}{{\sin 18^\circ \sin 54^\circ }}\)
\( = \frac{{4\cos 36^\circ }}{{\sin 54^\circ }}\)
= 4
.
.
.
Selengkapnya Download Disini
Soal dan pembahasan LKS yang lain cek disini.
Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan atau salah ketik.
Terimakasih
Semoga bermanfaat 😊
Wassalamu'alaikum warahmatullahi wabarakaatuh
- Get link
- X
- Other Apps
Comments
Popular Posts
Pembahasan Buku Sukino Kelas XI Matematika Peminatan revisi 2016
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 4 Matematika Peminatan Kelas XI Kurikulum 2013
- Get link
- X
- Other Apps
tidak bisa didownload kak
ReplyDeleteSudah kami perbaiki, monggo dicoba lagi 😊
Deletekok linknya gamuncul yaaa
ReplyDeleteada sampe 60 gak yaa?
DeleteSudah ada pembahasan sampai no 60
DeleteMonggo di cek lagi
Kak tolong gimana cara download ruko 2 1-30
DeleteSilahkan klik "Panduan Download"
DeleteGak keluar link. Gak bisa di dowload.
ReplyDeleteSilahkan ikuti panduan download 😊
Deletemakasih banyak, sangat membantu
ReplyDeleteBoleh minta yang ruko 2 ga? Soalnya di saya linknya ga bisa dibuka.
DeleteKalau berkenan ini email saya kimai03789@gmail.com
Terima kasih.
Kak kok tdk bisa yah kebuka yah?
ReplyDeletesudah kami cek masih bisa kok
Deletedownload via server 2 ya
ikuti panduan download nya
tetap tidak bisa di download kakk:(
DeleteRuko 1 tidak ada kak?
ReplyDeleteKok gk bisa didownload ya?
ReplyDelete1-60 kok gk ada
Delete