Postingan Utama
- Get link
- X
- Other Apps
RUKO 2 Trigonometri Analitika No 31-60
Assalamu'alaikum warahmatullahi wabarakaatuh
Mohon maaf sobat hudamath,pembahasan RUKO 2 Buku Sukino Matematika Peminatan Kelas XI Kurikulum 2013 no 31-60 nya agak telat. Mudah-mudahan belum telat-telat banget ya... :D
Di postingan ini hanya dibahas beberapa soal saja, selebihnya untuk pembahasan no yang lainnya bisa sobat download di bagian bawah postingan ini.
Di postingan ini hanya dibahas beberapa soal saja, selebihnya untuk pembahasan no yang lainnya bisa sobat download di bagian bawah postingan ini.
Langsung saja ya
.
.
.
31. Nilai dari \(\left( {\cos \left( {\frac{\pi }{5}} \right)\cos \left( {\frac{{2\pi }}{5}} \right)\cos \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{8\pi }}{5}} \right)} \right)\) adalah...
A. \( - \frac{1}{{16}}\)
B. \( - \frac{1}{8}\)
C. 0
D. \(\frac{1}{{16}}\)
E. \(\frac{1}{8}\)
Jawab : A
Pembahasan :
Ingat, \(\sin 2A = 2\sin A\cos A \to \cos A = \frac{{\sin 2A}}{{2\sin A}}\)
\(\cos \left( {\frac{\pi }{5}} \right)\cos \left( {\frac{{2\pi }}{5}} \right)\cos \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{8\pi }}{5}} \right)\)
\( = \frac{{\sin 2\left( {\frac{\pi }{5}} \right)}}{{2\sin \left( {\frac{\pi }{5}} \right)}}.\frac{{\sin 2\left( {\frac{{2\pi }}{5}} \right)}}{{2\sin \left( {\frac{{2\pi }}{5}} \right)}}.\frac{{\sin 2\left( {\frac{{4\pi }}{5}} \right)}}{{2\sin \left( {\frac{{4\pi }}{5}} \right)}}.\frac{{\sin 2\left( {\frac{{8\pi }}{5}} \right)}}{{2\sin \left( {\frac{{8\pi }}{5}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{2\pi }}{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}.\frac{{\sin \left( {\frac{{4\pi }}{5}} \right)}}{{\sin \left( {\frac{{2\pi }}{5}} \right)}}.\frac{{\sin \left( {\frac{{8\pi }}{5}} \right)}}{{\sin \left( {\frac{{4\pi }}{5}} \right)}}.\frac{{\sin \left( {\frac{{16\pi }}{5}} \right)}}{{\sin \left( {\frac{{8\pi }}{5}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{16\pi }}{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \left( {3\pi + \frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \left( {\pi + \frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \pi \cos \left( {\frac{\pi }{5}} \right) + \cos \pi \sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{0.\cos \left( {\frac{\pi }{5}} \right) + \left( { - 1} \right)\sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{ - \sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = - \frac{1}{{16}}\)
37. \(\sin 6x = \ldots \)
A. \(4\sin x - 3{\sin ^3}x\)
B. \(4{\sin ^3}2x - 3\sin 2x\)
C. \(4{\sin ^3}x - 3\sin x\)
D. \(3\sin x - 4{\sin ^3}x\)
E. \(3\sin 2x - 4{\sin ^3}2x\)
Jawab : E
Pembahasan :
\(\sin 6x = \sin \left( {4x + 2x} \right)\)
\( = \sin 4x\cos 2x + \cos 4x\sin 2x\)
\( = 2\sin 2x\cos 2x\cos 2x + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x{\cos ^2}2x + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x\left( {1 - {{\sin }^2}2x} \right) + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x - 2{\sin ^3}2x + \sin 2x - 2{\sin ^3}2x\)
\( = 3\sin 2x - 4{\sin ^3}2x\)
41. \(\cos 6A - 2\cos 4A - \cos 2A + 2 = \ldots \)
A. \(64{\cos ^2}A{\sin ^4}A\)
B. \(64{\sin ^2}A{\cos ^4}A\)
C. \(32{\sin ^2}A{\cos ^4}A\)
D. \(32{\cos ^2}A{\sin ^4}A\)
E. \(16{\sin ^2}A{\cos ^4}A\)
Jawab : D
Pembahasan :
Ingat, \(\cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\) sehingga:
\(\cos 6A - 2\cos 4A - \cos 2A + 2\)
\( = \left( {\cos 6A - \cos 2A} \right) - 2\cos 4A + 2\)
\( = \left( { - 2\sin 4A\sin 2A} \right) - 2\left( {\cos 4A - 1} \right)\)
\( = \left( { - 2.2\sin 2A\cos 2A\sin 2A} \right) - 2\left( {\cos 4A - 1} \right)\)
\( = \left( { - 4{{\sin }^2}2A\cos 2A} \right) + 2\left( {1 - \cos 4A} \right)\)
\( = - 4{\sin ^2}2A\cos 2A + 2\left( {2{{\sin }^2}2A} \right)\)
\( = - 4{\sin ^2}2A\cos 2A + 4{\sin ^2}2A\)
\( = 4{\sin ^2}2A\left( {1 - \cos 2A} \right)\)
\( = 4{\left( {2\sin A\cos A} \right)^2}\left( {2{{\sin }^2}A} \right)\)
\( = 4\left( {4{{\sin }^2}A{{\cos }^2}A} \right)\left( {2{{\sin }^2}A} \right)\)
\( = 32{\cos ^2}A{\sin ^4}A\)
47. \({\sin ^2}\left( {\frac{\pi }{8} + \frac{A}{2}} \right) - {\sin ^2}\left( {\frac{\pi }{8} - \frac{A}{2}} \right) = \ldots \)
A. \(2\sin \frac{\pi }{8}\)
B. \(\sin A\sin \frac{\pi }{8}\)
C. \(\frac{1}{2}\sin A\)
D. \(\frac{1}{{\sqrt 2 }}\sin A\)
E. \(\frac{1}{{\sqrt 2 }}\cos A\)
Jawab : D
Pembahasan :
Misal \(\frac{\pi }{8} = x\) dan \(\frac{A}{2} = y\)
\({\sin ^2}\left( {\frac{\pi }{8} + \frac{A}{2}} \right) - {\sin ^2}\left( {\frac{\pi }{8} - \frac{A}{2}} \right)\)
\( = {\sin ^2}\left( {x + y} \right) - {\sin ^2}\left( {x - y} \right)\)
\( = \left( {\sin \left( {x + y} \right) + \sin \left( {x - y} \right)} \right)\left( {\sin \left( {x + y} \right) - \sin \left( {x - y} \right)} \right)\)
\( = \left( {\sin x\cos y + \cos x\sin y + \sin x\cos y - \cos x\sin y} \right)\left( {\sin x\cos y + \cos x\sin y - \left( {\sin x\cos y - \cos x\sin y} \right)} \right)\)
\( = 2\sin x\cos y.2\cos x\sin y\)
\( = 2\sin x\cos x.2\cos y\sin y\)
\( = \sin 2x\sin 2y\)
\( = \sin 2\left( {\frac{\pi }{8}} \right)\sin A\)
\( = \sin \frac{\pi }{4}\sin A\)
\( = \frac{1}{{\sqrt 2 }}\sin A\)
56. Diketahui bahwa \(\sqrt[3]{{{{\sin }^2}x}} + \sqrt[3]{{{{\cos }^2}x}} = \sqrt[3]{2}\) maka \({\cos ^2}2x = \ldots \)
A. \(\frac{2}{{27}}\)
B. \(\frac{8}{{27}}\)
C. \(\frac{9}{{27}}\)
D. \(\frac{25}{{27}}\)
E. 1
Jawab : D
Pembahasan :
\(\sqrt[3]{{{{\sin }^2}x}} + \sqrt[3]{{{{\cos }^2}x}} = \sqrt[3]{2}\)
\({\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}} = {\left( 2 \right)^{\frac{1}{3}}}\)
\({\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right)^3} = {\left( {{{\left( 2 \right)}^{\frac{1}{3}}}} \right)^3}\)
\({\sin ^2}x + 3{\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}}} \right)^2}{\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}} + 3.{\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}}{\left( {{{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right)^2} + {\cos ^2}x = 2\)
\(1 + 3{\left( {\left( {{{\sin }^4}x} \right)\left( {{{\cos }^2}x} \right)} \right)^{\frac{1}{3}}} + 3{\left( {\left( {{{\cos }^4}x} \right)\left( {{{\sin }^2}x} \right)} \right)^{\frac{1}{3}}} = 2\)
\(3\left( {{{\left( {{{\sin }^4}x{{\cos }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^4}x{{\sin }^2}x} \right)}^{\frac{1}{3}}}} \right) = 1\)
\({\left( {{{\sin }^4}x{{\cos }^2}x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^4}x{{\sin }^2}x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x{{\left( {\sin x\cos x} \right)}^2}} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x{{\left( {\sin x\cos x} \right)}^2}} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x{{\left( {\frac{1}{2}\sin 2x} \right)}^2}} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x{{\left( {\frac{1}{2}\sin 2x} \right)}^2}} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x.\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x.\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}}{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}}{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}}\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right) = \frac{1}{3}\)
\({\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}}{\left( 2 \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)}^{\frac{1}{3}}}{{\left( 2 \right)}^{\frac{1}{3}}}} \right)^3} = {\left( {\frac{1}{3}} \right)^3}\)
\(\frac{1}{2}.{\sin ^2}2x = \frac{1}{{27}}\)
\({\sin ^2}2x = \frac{2}{{27}}\)
\(1 - {\cos ^2}2x = \frac{2}{{27}}\)
\({\cos ^2}2x = \frac{{27}}{{27}} - \frac{2}{{27}}\)
\({\cos ^2}2x = \frac{{25}}{{27}}\)
.
.
.
Wassalamu'alaikum warahmatullahi wabarakaatuh
.
.
.
31. Nilai dari \(\left( {\cos \left( {\frac{\pi }{5}} \right)\cos \left( {\frac{{2\pi }}{5}} \right)\cos \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{8\pi }}{5}} \right)} \right)\) adalah...
A. \( - \frac{1}{{16}}\)
B. \( - \frac{1}{8}\)
C. 0
D. \(\frac{1}{{16}}\)
E. \(\frac{1}{8}\)
Jawab : A
Pembahasan :
Ingat, \(\sin 2A = 2\sin A\cos A \to \cos A = \frac{{\sin 2A}}{{2\sin A}}\)
\(\cos \left( {\frac{\pi }{5}} \right)\cos \left( {\frac{{2\pi }}{5}} \right)\cos \left( {\frac{{4\pi }}{5}} \right)\cos \left( {\frac{{8\pi }}{5}} \right)\)
\( = \frac{{\sin 2\left( {\frac{\pi }{5}} \right)}}{{2\sin \left( {\frac{\pi }{5}} \right)}}.\frac{{\sin 2\left( {\frac{{2\pi }}{5}} \right)}}{{2\sin \left( {\frac{{2\pi }}{5}} \right)}}.\frac{{\sin 2\left( {\frac{{4\pi }}{5}} \right)}}{{2\sin \left( {\frac{{4\pi }}{5}} \right)}}.\frac{{\sin 2\left( {\frac{{8\pi }}{5}} \right)}}{{2\sin \left( {\frac{{8\pi }}{5}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{2\pi }}{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}.\frac{{\sin \left( {\frac{{4\pi }}{5}} \right)}}{{\sin \left( {\frac{{2\pi }}{5}} \right)}}.\frac{{\sin \left( {\frac{{8\pi }}{5}} \right)}}{{\sin \left( {\frac{{4\pi }}{5}} \right)}}.\frac{{\sin \left( {\frac{{16\pi }}{5}} \right)}}{{\sin \left( {\frac{{8\pi }}{5}} \right)}}\)
\( = \frac{{\sin \left( {\frac{{16\pi }}{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \left( {3\pi + \frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \left( {\pi + \frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{\sin \pi \cos \left( {\frac{\pi }{5}} \right) + \cos \pi \sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{0.\cos \left( {\frac{\pi }{5}} \right) + \left( { - 1} \right)\sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{5}} \right)}}\)
\( = \frac{{ - \sin \left( {\frac{\pi }{5}} \right)}}{{16\sin \left( {\frac{\pi }{7}} \right)}}\)
\( = - \frac{1}{{16}}\)
37. \(\sin 6x = \ldots \)
A. \(4\sin x - 3{\sin ^3}x\)
B. \(4{\sin ^3}2x - 3\sin 2x\)
C. \(4{\sin ^3}x - 3\sin x\)
D. \(3\sin x - 4{\sin ^3}x\)
E. \(3\sin 2x - 4{\sin ^3}2x\)
Jawab : E
Pembahasan :
\(\sin 6x = \sin \left( {4x + 2x} \right)\)
\( = \sin 4x\cos 2x + \cos 4x\sin 2x\)
\( = 2\sin 2x\cos 2x\cos 2x + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x{\cos ^2}2x + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x\left( {1 - {{\sin }^2}2x} \right) + \left( {1 - 2{{\sin }^2}2x} \right)\sin 2x\)
\( = 2\sin 2x - 2{\sin ^3}2x + \sin 2x - 2{\sin ^3}2x\)
\( = 3\sin 2x - 4{\sin ^3}2x\)
41. \(\cos 6A - 2\cos 4A - \cos 2A + 2 = \ldots \)
A. \(64{\cos ^2}A{\sin ^4}A\)
B. \(64{\sin ^2}A{\cos ^4}A\)
C. \(32{\sin ^2}A{\cos ^4}A\)
D. \(32{\cos ^2}A{\sin ^4}A\)
E. \(16{\sin ^2}A{\cos ^4}A\)
Jawab : D
Pembahasan :
Ingat, \(\cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)\) sehingga:
\(\cos 6A - 2\cos 4A - \cos 2A + 2\)
\( = \left( {\cos 6A - \cos 2A} \right) - 2\cos 4A + 2\)
\( = \left( { - 2\sin 4A\sin 2A} \right) - 2\left( {\cos 4A - 1} \right)\)
\( = \left( { - 2.2\sin 2A\cos 2A\sin 2A} \right) - 2\left( {\cos 4A - 1} \right)\)
\( = \left( { - 4{{\sin }^2}2A\cos 2A} \right) + 2\left( {1 - \cos 4A} \right)\)
\( = - 4{\sin ^2}2A\cos 2A + 2\left( {2{{\sin }^2}2A} \right)\)
\( = - 4{\sin ^2}2A\cos 2A + 4{\sin ^2}2A\)
\( = 4{\sin ^2}2A\left( {1 - \cos 2A} \right)\)
\( = 4{\left( {2\sin A\cos A} \right)^2}\left( {2{{\sin }^2}A} \right)\)
\( = 4\left( {4{{\sin }^2}A{{\cos }^2}A} \right)\left( {2{{\sin }^2}A} \right)\)
\( = 32{\cos ^2}A{\sin ^4}A\)
47. \({\sin ^2}\left( {\frac{\pi }{8} + \frac{A}{2}} \right) - {\sin ^2}\left( {\frac{\pi }{8} - \frac{A}{2}} \right) = \ldots \)
A. \(2\sin \frac{\pi }{8}\)
B. \(\sin A\sin \frac{\pi }{8}\)
C. \(\frac{1}{2}\sin A\)
D. \(\frac{1}{{\sqrt 2 }}\sin A\)
E. \(\frac{1}{{\sqrt 2 }}\cos A\)
Jawab : D
Pembahasan :
Misal \(\frac{\pi }{8} = x\) dan \(\frac{A}{2} = y\)
\({\sin ^2}\left( {\frac{\pi }{8} + \frac{A}{2}} \right) - {\sin ^2}\left( {\frac{\pi }{8} - \frac{A}{2}} \right)\)
\( = {\sin ^2}\left( {x + y} \right) - {\sin ^2}\left( {x - y} \right)\)
\( = \left( {\sin \left( {x + y} \right) + \sin \left( {x - y} \right)} \right)\left( {\sin \left( {x + y} \right) - \sin \left( {x - y} \right)} \right)\)
\( = \left( {\sin x\cos y + \cos x\sin y + \sin x\cos y - \cos x\sin y} \right)\left( {\sin x\cos y + \cos x\sin y - \left( {\sin x\cos y - \cos x\sin y} \right)} \right)\)
\( = 2\sin x\cos y.2\cos x\sin y\)
\( = 2\sin x\cos x.2\cos y\sin y\)
\( = \sin 2x\sin 2y\)
\( = \sin 2\left( {\frac{\pi }{8}} \right)\sin A\)
\( = \sin \frac{\pi }{4}\sin A\)
\( = \frac{1}{{\sqrt 2 }}\sin A\)
56. Diketahui bahwa \(\sqrt[3]{{{{\sin }^2}x}} + \sqrt[3]{{{{\cos }^2}x}} = \sqrt[3]{2}\) maka \({\cos ^2}2x = \ldots \)
A. \(\frac{2}{{27}}\)
B. \(\frac{8}{{27}}\)
C. \(\frac{9}{{27}}\)
D. \(\frac{25}{{27}}\)
E. 1
Jawab : D
Pembahasan :
\(\sqrt[3]{{{{\sin }^2}x}} + \sqrt[3]{{{{\cos }^2}x}} = \sqrt[3]{2}\)
\({\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}} = {\left( 2 \right)^{\frac{1}{3}}}\)
\({\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right)^3} = {\left( {{{\left( 2 \right)}^{\frac{1}{3}}}} \right)^3}\)
\({\sin ^2}x + 3{\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}}} \right)^2}{\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}} + 3.{\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}}{\left( {{{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right)^2} + {\cos ^2}x = 2\)
\(1 + 3{\left( {\left( {{{\sin }^4}x} \right)\left( {{{\cos }^2}x} \right)} \right)^{\frac{1}{3}}} + 3{\left( {\left( {{{\cos }^4}x} \right)\left( {{{\sin }^2}x} \right)} \right)^{\frac{1}{3}}} = 2\)
\(3\left( {{{\left( {{{\sin }^4}x{{\cos }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^4}x{{\sin }^2}x} \right)}^{\frac{1}{3}}}} \right) = 1\)
\({\left( {{{\sin }^4}x{{\cos }^2}x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^4}x{{\sin }^2}x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x{{\left( {\sin x\cos x} \right)}^2}} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x{{\left( {\sin x\cos x} \right)}^2}} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x{{\left( {\frac{1}{2}\sin 2x} \right)}^2}} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x{{\left( {\frac{1}{2}\sin 2x} \right)}^2}} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x.\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x.\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\sin }^2}x} \right)^{\frac{1}{3}}}{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} + {\left( {{{\cos }^2}x} \right)^{\frac{1}{3}}}{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}}\left( {{{\left( {{{\sin }^2}x} \right)}^{\frac{1}{3}}} + {{\left( {{{\cos }^2}x} \right)}^{\frac{1}{3}}}} \right) = \frac{1}{3}\)
\({\left( {\frac{1}{4}.{{\sin }^2}2x} \right)^{\frac{1}{3}}}{\left( 2 \right)^{\frac{1}{3}}} = \frac{1}{3}\)
\({\left( {{{\left( {\frac{1}{4}.{{\sin }^2}2x} \right)}^{\frac{1}{3}}}{{\left( 2 \right)}^{\frac{1}{3}}}} \right)^3} = {\left( {\frac{1}{3}} \right)^3}\)
\(\frac{1}{2}.{\sin ^2}2x = \frac{1}{{27}}\)
\({\sin ^2}2x = \frac{2}{{27}}\)
\(1 - {\cos ^2}2x = \frac{2}{{27}}\)
\({\cos ^2}2x = \frac{{27}}{{27}} - \frac{2}{{27}}\)
\({\cos ^2}2x = \frac{{25}}{{27}}\)
.
.
.
Soal dan pembahasan LKS yang lain cek disini.
Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan atau salah ketik.
Terimakasih
Semoga bermanfaat 😊
Wassalamu'alaikum warahmatullahi wabarakaatuh
- Get link
- X
- Other Apps
Labels:
Matematika Peminatan Kelas XI
Pembahasan Buku Matematika Peminatan
Pembahasan buku Sukino
Persamaan trigonometri
RUKO 2
trigonometri analitika
Comments
Popular Posts
Pembahasan Buku Sukino Kelas XI Matematika Peminatan revisi 2016
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 4 Matematika Peminatan Kelas XI Kurikulum 2013
- Get link
- X
- Other Apps
Yang no 49 kk nggak ada?
ReplyDeleteMakasih bang
ReplyDelete