Postingan Utama
- Get link
- X
- Other Apps
Pembahasan Buku Sukino BAB 1 LKS 1 Matematika Peminatan Kelas XI Kurikulum 2013
LKS 1
1.
Jika \(\theta \) sudut lancip dan \(\cos \theta = \frac{3}{5}\) maka nilai dari \(\frac{{\sin \theta .\tan \theta - 1}}{{2{{\tan }^2}\theta }}\) adalah…
A. \(\frac{1}{{36}}\)
B. \(\frac{3}{{160}}\)
C. \(\frac{16}{{625}}\)
D. \(\frac{625}{{16}}\)
E. \(\frac{160}{{3}}\)
Jawab : B
Pembahasan :
\(\theta \) lancip,
maka
\(\sin \theta = \frac{4}{5}\)
\(\tan \theta = \frac{4}{3}\)
Jadi, \(\frac{{\sin \theta .\tan \theta - 1}}{{2{{\tan }^2}\theta }} = \frac{{\left( {\frac{4}{5}} \right).\left( {\frac{4}{3}} \right) - 1}}{{2.{{\left( {\frac{4}{3}} \right)}^2}}} = \frac{3}{{160}}\)
2.
Jika \(\tan \theta = \frac{1}{{\sqrt 7 }}\), nilai \(\left( {\frac{{{{\csc }^2}\theta - {{\sec }^2}\theta }}{{{{\csc }^2}\theta + {{\sec }^2}\theta }}} \right)\) adalah…
A. \(\frac{1}{2}\)
B. \(\frac{3}{7}\)
C. \(\frac{5}{7}\)
D. \(\frac{3}{4}\)
E. 1
Jawab : D
Pembahasan :
\(\csc \theta = \frac{1}{{\sin \theta }} = 2\sqrt 2 \)\(\sec \theta = \frac{1}{{\cos \theta }} = \frac{{2\sqrt 2 }}{{\sqrt 7 }} = \frac{{2\sqrt {14} }}{7}\)
Jadi, \(\left( {\frac{{{{\csc }^2}\theta - {{\sec }^2}\theta }}{{{{\csc }^2}\theta + {{\sec }^2}\theta }}} \right) = \left( {\frac{{{{\left( {2\sqrt 2 } \right)}^2} - {{\left( {\frac{{2\sqrt {14} }}{7}} \right)}^2}}}{{{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\frac{{2\sqrt {14} }}{7}} \right)}^2}}}} \right)\)
\( = \left( {\frac{{8 - \frac{{56}}{{49}}}}{{8 + \frac{{56}}{{49}}}}} \right)\)
\( = \left( {\frac{{\frac{{336}}{{49}}}}{{\frac{{448}}{{49}}}}} \right)\)
\( = \frac{3}{4}\)
3.
Jika \(\tan \theta = \frac{a}{x}\) maka \(\frac{x}{{\sqrt {{a^2} + {x^2}} }}\) sama dengan…
A. \(\sin \theta \)
B. \(\cos \theta \)
C. \(\cot \theta \)
D. \(\sec \theta \)
E. \(\csc \theta \)
Jawab : B
Pembahasan :
\(\frac{x}{{\sqrt {({a^2} + {x^2})} }}\) sama dengan perbandingan sisi samping sudut
dengan sisi miring \( \to \frac{{sa}}{{mi}} = \cos \theta \)
4.
Jika \({\cot ^2}\theta = \frac{7}{8}\) dan \(0 < \theta < \frac{\pi }{2}\), nilai dari \(\frac{{\left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)}}{{\left( {1 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}}\) adalah…
A. \(\frac{7}{8}\)
B. \(\frac{7}{6}\)
C. \(\frac{7}{5}\)
D. \(\frac{7}{4}\)
E. \(\frac{7}{3}\)
Jawab : A
Pembahasan :
\({\cot ^2}\theta = \frac{7}{8} \to \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }} = \frac{7}{8}\)
\(\frac{{\left( {1 + \sin \theta } \right)\left( {1 - \sin \theta } \right)}}{{\left( {1 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}} = \frac{{1 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }}\)
\( = \frac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\)
\( = \frac{7}{8}\)
5. Jika \(3\sin \theta + 4\cos \theta = 5\) maka nilai dari \(\sin \theta \) adalah…
A. \(0,50\)
B. \(0,60\)
C. \(0,75\)
D. \(0,8\)
E. \(1,2\)
Jawab : B
Pembahasan :
\(3\sin \theta + 4\cos \theta = 5\)
\(3\tan \theta + 4 = 5\sec \theta \)
\(9{\tan ^2}\theta + 24\tan \theta + 16 = 25{\sec ^2}\theta \)
Karena \({\sec ^2}\theta = 1 + {\tan ^2}\theta \), maka:
\(9{\tan ^2}\theta + 24\tan \theta + 16 = 25\left( {1 + {{\tan }^2}\theta } \right)\)
\(9{\tan ^2}\theta + 24\tan \theta + 16 = 25 + 25{\tan ^2}\theta \)
\(16{\tan ^2}\theta - 24\tan \theta + 9 = 0\)
\(\left( {4\tan \theta - 3} \right)\left( {4\tan \theta - 3} \right) = 0\)
\(\tan \theta = \frac{3}{4}\)
\(\sin \theta = \frac{{de}}{{mi}} = \frac{3}{5} = 0,6\)
Soal dan pembahasan LKS yang lain cek disini.
Kritik dan saran silahkan berikan di komentar, termasuk jika ada salah hitung dan atau salah ketik.
Terimakasih
- Get link
- X
- Other Apps
Labels:
BAB 1
Matematika Peminatan Kelas XI
Pembahasan Buku Matematika Peminatan
Pembahasan buku Sukino
trigonometri
Comments
Popular Posts
Pembahasan Buku Sukino Kelas XI Matematika Peminatan revisi 2016
- Get link
- X
- Other Apps
Soal dan Pembahasan Buku Sukino BAB 4 Polinomial LKS 4 Matematika Peminatan Kelas XI Kurikulum 2013
- Get link
- X
- Other Apps
Gan minta tolong untuk Bab 2, terimaksih
ReplyDeleteGan, mnta tlong ruko 2 yg essai nya donk
ReplyDeletebang, bagaimana cara mendownload pembahasannya untuk memeriksa hasil jawaban yang saya sudah kerjakan ? lagipula laptop saya tidak bisa mendownload pembahasannya baik server 1 maupun server 2
ReplyDeleteHalo kak...
ReplyDeleteBagian B nyaa blm ada ya kak?